4.7 Exponentialfunktioner

Från Mathonline
Hoppa till: navigering, sök
        <<<  Förra avsnitt          Genomgång          Övningar          Facit          Nästa avsnitt  >>      


Exempel på exponentialfunktioner:


\[ y \, = \, 3\,^\color{Red}x \, \]
\[ y \, = \, 5 \cdot 2\,^\color{Red}x \, \]
\[ y \, = \, 6 \cdot (0,15)\,^{\color{Red}x} \, \]
\[ y \, = \, \frac{4}{3\,^x} \, = \, 4 \cdot 3\,^{\color{Red}{-x}} \, \]

Generellt:

\( y \, = \, C\,a\,^\color{Red}x \, \)
  är en exponentialfunktion,
därför att variabeln \( \, \color{Red}x \, \) finns i exponenten.

\( \quad\; C \, \) och \( \, a \, \) är konstanter.


En exponentialfunktion som beskriver en värdeökning

4 6 Exponentialfkt.jpg

Exponentialekvationer kan vi inte lösa exakt i Matte 1b. Därför prövar vi:

Sätt in för \( \, x = 1, 2, 3, \ldots \, \) och pröva.

Exponentialfunktioner1.jpg


Exponentialfunktionen i exemplet ovan:


\( \, y \, = \, 5\,000 \cdot (1,07)\,^\color{Red}x \, \)    dvs \( \, C = 5\,000\) (startkapitalet) och \( \, a = 1,07 \, \) (förändringsfaktorn).

\( \quad\;\; y \, = \, \) Kapitalets tillväxt som en funktion av tiden \( \color{Red}x \, \).


Generellt:

\( y \, = \, C\,a\,^\color{Red}x \, \)
   där \( \, C \,\) och \( \, a \,\) är konstanter.

Exponentialfunktioner ger upphov till Exponentialekvationer när \( \, y \, \) sätts till ett värde:

\( 10\,000 \, = \, 5\,000 \cdot (1,07)\,^\color{Red}x \qquad \) eller \( \qquad (1,07)\,^\color{Red}x \, = \, 2\)

Exponentialekvationer löses genom logaritmering (läses i Matte 2b).








Copyright © 2022 TechPages AB. All Rights Reserved.