1.1 Om tal

Från Mathonline
Hoppa till: navigering, sök
       Genomgång          Övningar          Nästa avsnitt  >>      


Vad är ett tal egentligen?

Tre katter 80.jpg \( \quad \) Vad är det gemensamma

\( \qquad\qquad \) hos

tre katter och tre hundar?
\( \quad \) Tre hundar 80.jpg \(\qquad\qquad\) Tre 65.gif

Om vi bortser från själva katter och hundar så är det antalet 3 som är gemensamt för båda mängder.

Vi kan generalisera:

Antalet saker och ting som finns i en mängd, kallas för talet \( \, {\color{Red} n} \, \) .

Eller:

Talet \( \, {\color{Red} n} \, \) är det gemensamma hos mängder som innehåller precis \( \, {\color{Red} n} \, \) objekt.

Men är detta inte bara att byta ut ordet tal mot ett annat: antal? Vi kan lika bra fortsätta att fråga: Vad är antal? Det löser inget problem.

Frågan Vad är tal? är egentligen irrelevant. Relevant är snarare det vi gör när vi räknar antalet saker och ting.

Det handlar i själva verket om tankeprocessen som bakom ligger bakom räknandet.

Denna tankeprocess kallas för abstraktion: Man bortser från de oväsentliga skillnaderna mellan objekten (katter och hundar).

Kvar blir det väsentliga, gemensamma hos dem (talet tre). Så bildas begreppet tal. Läs mer om abstraktion på länken nedan:

Abstraktion

Fig111.gif \( \qquad \) \( \qquad \)

Olika typer av tal

Vi brukar räkna antalet saker och ting i vår omgivning med den enklaste typen av tal,

de positiva heltalen:\(\qquad\qquad\qquad\qquad\)Positiva tal 16.gif

Så räknar vi antal objekt i en mängd, t.ex. fingrarna i våra händer. Alla dessa tal är \( \, > 0 \),

medan själva \( \, 0 \, \) får man först genom att dra av två lika stora positiva tal från varandra,

t.ex. \( \, 4 - 4 = 0 \, \). Detta leder till en ny talmängd med de positiva heltalen och \( 0 \), kallad:

Naturliga tal:       Naturliga tal 16.gif

Drar man av ett större naturligt tal från ett mindre kommer man till negativa tal, t.ex.

\( \, 4 - 5 = -1 \). Så uppstår ytterligare en ny talmängd:

Heltal:       Heltal 16.gif

Division av två heltal med varandra, t.ex. \( \, 1 / 3 = \displaystyle{1 \over 3} \, \) leder till tal i bråkform, även kallade:

     Lökmodell:

De olika taltyperna är delmängder av varandra.


Taltypera 3red.jpg
Rationella tal:       Rationella tal 60.jpg

Rationella tal är tal i bråkform och kan alltid skrivas i decimalform. Dock finns decimaltal som inte kan skrivas i bråkform.

Exempel:   Drar man roten ur \( \, 2 \, \) kommer man till: \( \qquad\qquad \sqrt{2} = 1,4142135623730950488016887\ldots \)

\( \sqrt{2} \, \) kan inte anges i bråkform \(-\) är inget rationellt tal \(-\) därför att det har oändligt många decimaler utan något upprepande mönster (utan period).

Sådana tal kallas för irrationella tal och är decimaltal med en oändlig icke-periodisk decimalutveckling. \( \sqrt{2} \, \), \( \sqrt{3} \, \) och talet \( \, \pi \, \) är exempel på irrationella tal.

Matematiskt exakt talat, är \( \, \sqrt{2} \, \) gränsvärdet (limes) av en följd av rationella tal som i varje steg närmar sig \( \, \sqrt{2} \). Gränsvärdet själv är inte längre rationellt. Därför inför man en ny talmängd, de irrationella talen.

Följande ny taltyp uppstår:

Reella tal:              De rationella talen tillsammans med alla irrationella.

Men det finns ytterligare en talmängd som är ännu mer omfattande än de reella talen.

Löser man t.ex. ekvationen \( x^2 + 1 = 0 \) får man \( \; x = \sqrt{-1} \) som inte är något reellt tal därför att det inte finns något reellt tal som multiplicerat med sig själv ger \( \, -1 \). Vi säger: ekvationen saknar reell lösning.

För att lösa detta dilemma införs en ny symbol \( \; {\color{Red} i} \, = \, \sqrt{-1} \; \) med egenskapen \( \; {\color{Red} i}\,^2 \, = \, -1 \; \) med vars hjälp den nya talmängden definieras:

Komplexa tal:       Alla tal av formen \( \quad a \, + \, b \cdot {\color{Red} i} \quad \) med \( \quad a, b \; = \; \) reella tal.

Alla talmängder bygger sin konstruktion på och är resultat av abstraktioner, i princip av samma typ som inledningsvis introducerades med talbegreppet \(-\) fast på högre nivå. Symbolen \( \, {\color{Red} i} \, \) är ett exempel på en sådan abstraktion.


Vårt talsystem \(-\) det decimala positionssystemet

Att räkna med tal är en sak, att skriva upp och visa tal en helt annan. För att kunna kommunicera tal måste vi ge talen, som ju är resultat av abstraktion, ändå en konkret form som alla förstår.

Man pratar om representation av tal. Det har funnits genom historien en uppsjö av olika sätt att skriva eller representera tal. Det sätt som idag används i kommunikation bland människor världen över är det s.k. decimala positionssystemet. Så kallas vårt talsystem som vi dagligen använder.

Det har visat sig genom historien att detta är det enklaste sättet att representera tal. Det känns naturligt att ta sina \( \, 10 \, \) fingrar till hjälp när man räknar i huvudet, vilket endast är möjligt om talsystemet är decimalt:

Decimalt heter vårt talsystem därför att det bygger på basen \( \, 10 \, \) (på latin: deci). Det finns andra talsystem som bygger på andra baser vilket tas upp i avsnittet Talsystem med olika baser.

I det decimala positionssystemet används siffrorna \( \; \) Siffrorna 0-9 16.gif \( \; \) för att skriva alla tal.

Så kan alla tal större än \( \, 9 \, \), alla negativa tal samt alla decimaltal skrivas med hjälp av de första \( \, 10 \, \) naturliga talen (med minustecknet och decimalkommat). Detta blir möjligt genom att ge siffrorna \( \, 0\)-\( \, 9\):s position i talen ett visst värde.

Positionssystem heter vårt talsystem därför att det är positionen eller placeringen av siffrorna \( \, 0\)-\(9 \, \) i talet som bestämmer siffrornas värde.

I det decimala positionssystemet har varje position ett \( \, 10 \, \) gånger större värde än positionen till höger.


Praktiska slutsatser ur denna regel

\[ 235 \, \cdot \, 10 \, = \, 2\,35{\color{Red}0} \]
\[ 235 \, \cdot \, 100 \, = \, 23\,5{\color{Red}{00}} \]
\[ 235 \, \cdot \, 1000 \, = \, 235\,{\color{Red}{000}} \]

Att multiplicera med \( \, 10 \, \) innebär att förstora med faktorn \( \, 10 \). För heltal innebär det att lägga till \( \, {\color{Red}0} \, \) till höger om talet.

Att multiplicera med \( \, 100 \, \) innebär att förstora med faktorn \( \, 100 \). För heltal innebär det att lägga till \( \, {\color{Red}{00}} \, \) till höger om talet.

Att multiplicera med \( \, 1000 \, \) innebär att förstora med faktorn \( \, 1\,000 \). För heltal innebär det att lägga till \( \, {\color{Red}{000}} \, \) till höger om talet. Osv.

När vi behandlar decimaltal kommer samma regel att dyka upp i en annan skepnad.

De olika positioner som bestämmer siffrornas värde har följande beteckningar:


Följande exempel visar hur en siffras position bestämmer dess värde:

  • ental
  • tiotal
  • hundratal
  • tusental
  • tiotusental
  • hundratusental osv.

Exempel 1

Skriv talet \( \, 7\,142 \, \) som en summa av termer där varje term har formen "(siffra \( \, 0\)-\(9 \, \)) gånger \( \, 10\)-potenser".

Ange även talets entals-, tiotals-, hundratals- och tusentalssiffra. Förklara varför vårt talsystem är decimalt.

Lösning:

Fig112bk.jpg


Om du har svårigheter att förstå skrivsättet med \( \, 10\)-potenser läs avsnittet om Potenser. Kom speciellt ihåg att \( \, 10^0 \, = \, 1 \, \) enligt potenslagarna.

Siffran \( \, 2 \, \) i talet \( \, 7\,142 \, \) är talets ental och har det minsta värdet, nämligen \( \, 2 \cdot 1 = 2 \). Sedan följer de andra med stigande värden.

Nästa siffra \( \, 4 \, \) till vänster är talets tiotal och har värdet \( \, 4 \cdot 10 = 40 \).

Nästa siffra \( \, 1 \, \) till vänster är talets hundratal och har värdet \( \, 1 \cdot 100 = 100 \).

Siffran \( \, 7 \, \) längst till vänster är talets tusental och har det högsta värdet, nämligen \( \, 7 \cdot 1\,000 = 7\,000 \).


Exempel 2

Ange siffrornas värde i talet \( \, 312 \). Beräkna talets värde utgående från siffrornas värden.

Skriv även talet som en summa av termer där varje term har formen "(siffra \( \, 0\)-\(9 \, \)) gånger \( \, 10\)-potenser".

Lösning:

Första siffran \( \, 3 \, \) är pga sin position ett hundratal och har därför värdet värdet \( \, 3 \cdot 100 \) dvs \( \, 300 \).

Siffran \( \, 1 \, \) är ett tiotal och har därför värdet \( \, 1 \cdot 10 \, \) dvs \( \, 10 \, \).

Siffran \( \, 2 \, \) är ett ental och har därför värdet \( \, 2 \cdot 1 \, \) dvs \( \, 2 \, \).

Siffran \( \, 2 \, \) är ett ental och har därför värdet \( \, 2 \cdot 1 \, \) dvs \( \, 2 \, \).

Summerar man alla siffrors värden beräknas talets värde till \( \, 300 + 10 + 2 \, = \,{\color{Red} {312}} \, \). Mera utförligt:

\[ {\color{Red} 3} \, \cdot100 + {\color{Red} 1}\cdot10 + {\color{Red} 2}\cdot1 \,= \,{\color{Red} 3} \, \cdot 10^2 + {\color{Red} 1}\cdot 10^1 + {\color{Red} 2}\cdot 10^0 = 300 + 10 + 2 \, = \,{\color{Red} {312}} \, \]


Man säger att \( \, {\color{Red} {312}} \, \) är ett sätt \(-\) det decimala positionssystemets sätt \(-\) att representera dvs visa talets värde.

I beräkningen av talets värde i Exempel 2 har vi istället för \( \, 100 \, \) skrivit \( \, 10^2 \, \), vilket betyder \( \, 10 \cdot 10 \, \), istället för \( \, 10 \, \) skrivit \( \, 10^1 \, \) och istället för \( \, 1 \, \) skrivit \( \, 10^0 \, \). Detta för att visa att det bildas en summa av termer där varje term har formen "(siffra \( \, 0\)-\(9 \, \)) gånger \( \, 10\)-potenser". Denna summa är en generell form för representation av tal i det decimala positionssystemet som har basen \( \, 10 \). På samma sätt kan i andra talsystem med andra baser talens värde beräknas \(-\) bara att basen \( \, 10 \, \) byts ut mot andra baser.

Uppgifter av typ Exempel 2 brukar formuleras kort så här:


Exempel 3

Ange talet \( \, 5\,689 \, \) som en summa av termer med \( \, 10\)-potenser.

Lösning:

\[{\color{Red} {5\,689}}\;=\;{\color{Red} 5}\cdot1000\,+\,{\color{Red} 6}\cdot100\,+\,{\color{Red} 8}\cdot10\,+\,{\color{Red} 9}\cdot1\;=\;{\color{Red} 5}\cdot10^3\,+\,{\color{Red} 6}\cdot10^2\,+\,{\color{Red} 8}\cdot10^1\,+\,{\color{Red} 9}\cdot10^0\]


Här en uppgift av en annan typ:


Exempel 4

Siffrorna i talet \( \, 96\,038 \, \) ska flyttas så att man får ett femsiffrigt tal som ligger så nära \( \, 40\,000 \, \) som möjligt.

Lösning:

De två siffrorna närmast \( \, 4 \, \) (första siffran i \( \, 40\,000\)) är \( \, 3 \, \) och \( \, 6 \, \).
Om vi börjar med siffran \( \, 6 \, \) skulle den ge värdet \( \, 60\,000 \, \) som är längre bort från 40 000 än om vi börjar med 3. Detta skulle nämligen ge värdet 30 000 som är närmare \( \, 40\,000 \, \). Därför bestämmer vi oss att stanna under \( \, 40\,000 \, \), då blir den första siffran i det tal vi söker, \( \, 3 \, \). Då får vi \( \, 30\,000 \, \).
För att komma så nära \( \, 40\,000 \, \) som möjligt tar vi som nästa siffra den största, nämligen \( \, 9 \, \). Då får vi \( \, 39\,000 \, \). Den näst största siffran är \( \, 8 \, \). Då blir det \( \, 39\,800 \, \). Slutligen är bara \( \, 6 \, \) och \( \, 0 \, \) kvar, så att det blir \( \, 39\,860 \, \).


Summa \(-\) Differens \(-\) Produkt \(-\) Kvot

De fyra räknesätten addition, subtraktion, multiplikation och division har vi lärt oss i grundskolan. De är räkneoperationer. Deras resultat kallas för:


Summa   =   resultat av addition:

\( \;\; 12 \, + \, 4 \, = 16 \quad {\rm där} \quad 12 \; {\rm och} \; 4 \; {\rm är\;termer\;och} \; 16 \; {\rm summan.} \)


Differens   =   resultat av subtraktion:

\( \;\; 12 \, - \, 4 \, = 8 \quad {\rm där} \quad 12 \; {\rm och} \; 4 \; {\rm är\;termer\;och} \; 8 \; {\rm differensen.} \)


Produkt   =   resultat av multiplikation:

\( \;\; 12 \, \cdot \, 4 \, = 48 \quad {\rm där} \quad 12 \; {\rm och} \; 4 \; {\rm är\;} \) faktorer \( {\rm\;och} \; 48 \; {\rm produkten.} \)


Kvot   =   resultat av division:

\( \;\; 12 \, / \, 4 \, = 3 \quad {\rm där} \quad 12 \; {\rm är\;täljaren\;,} \; 4 \; {\rm nämnaren\;och} \; 3 \; {\rm kvoten.} \)


Internetlänkar

https://www.youtube.com/watch?v=slqBCVthYKQ

http://www.vaksalaskolan.uppsala.se/webb/matematik-spel.htm

https://www.mathsisfun.com/associative-commutative-distributive.html

http://www.1728.com/arith.htm

http://www.olleh.se/start/frageprogramMaA.php





Copyright © 2021 TechPages AB. All Rights Reserved.