Skillnad mellan versioner av "Ekvationer"

Från Mathonline
Hoppa till: navigering, sök
m (Vilken typ av ekvation?)
m (Rotekvationer)
Rad 28: Rad 28:
  
 
Här följer ett exempel på hur man löser rotekvationen ovan genom att skriva om den till en 2:a gradsekvation.
 
Här följer ett exempel på hur man löser rotekvationen ovan genom att skriva om den till en 2:a gradsekvation.
 +
 +
<math>
 +
\begin{align}
 +
0 & = f'(x_0)(x - x_0) + f(x_0) \\
 +
x - x_0 & = -\frac{f(x_0)}{f'(x_0)} \\
 +
x & = x_0 - \frac{f(x_0)}{f'(x_0)} \\
 +
\end{align}
 +
</math> <br />
 +
Iterationsformeln blir alltså<br />
 +
<math>x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}</math>

Versionen från 11 november 2010 kl. 14.09

       Teori          Övningar      


Vilken typ av ekvation?

Ekvationer har vi lärt oss ända från grundskolan till gymnasiet. I Matte A-kursen har vi bl.a. löst ekvationer av typ\[ 4\,x - (3\,x + 2) = -5\,x+12 \]

Sådana ekvationer kallas linjära eller 1:a gradsekvationer eftersom obekanten \( x \) förekommer endast som 1:a gradspotens dvs med exponenten 1. \( x \) är ju samma som \( x^1 \). Obekantens exponent är alltså avgörande för ekvationens typ och därmed för svårighetsgraden när man vill lösa ekvationen. I Matte B-kursen har vi bl.a. löst ekvationer av typ\[ x^2 + 6\,x - 16 = 0 \]

Sådana ekvationer kallas kvadratiska eller 2:a gradsekvationer eftersom obekanten \( x \) förekommer högst som 2:a gradspotens dvs med exponenten 2, dvs som \( x^2 \).

Den generella lösningen av 3:e- och högre gradsekvationer är så pass svår att den inte behandlas i skolan. Det är t.o.m. omöjligt att med algebraiska operationer dvs \( + \), \( - \), \( \cdot \), \( / \) och \( \sqrt{ } \) lösa ekvationer av 5:e och högre grad i generell form, vilket bevisades av den norske matematikern Niels Henrik Abel 1824. I praktiken använder man numeriska metoder som man programmerar och låter datorn göra jobbet. Vissa specialfall däremot går att lösa algebraiskt. Vi kommer att ta upp en speciell typ av 4:e gradsekvationer som går att återföra till 2:a gradsekvationer. Men först ska vi komplettera våra kunskaper om ekvationslösning med bl.a. ekvationer av typ\[ \sqrt{x + 2} - 7 = x \]

Sådana ekvationer kallas rotekvationer. Vi kommer att lösa dem genom att återföra dem till 2:a gradsekvationer, precis som man återför 2:a gradsekvationer till 1:a gradsekvationer. Man bryter ned den nya, okända typen (svårighetsgraden) till en lägre, redan känd typ.

Rotekvationer

Här följer ett exempel på hur man löser rotekvationen ovan genom att skriva om den till en 2:a gradsekvation.

\( \begin{align} 0 & = f'(x_0)(x - x_0) + f(x_0) \\ x - x_0 & = -\frac{f(x_0)}{f'(x_0)} \\ x & = x_0 - \frac{f(x_0)}{f'(x_0)} \\ \end{align} \)
Iterationsformeln blir alltså
\(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\)